국민연금 고갈은 '계획된 고갈'. 고갈 이후에도 부과식으로 전액 지급 가능

어르신에게 지급되는 가장 기본적인 연금은 국민연금이 아니라 기초연금입니다. 65세 이상 어르신에게 매월 최대 30만원을 지급하죠. 올해만 약 19조원의 예산이 필요합니다. 그런데 기초연금은 적립금이 0원입니다. 아예 적립금을 쌓아 놓지 않고 세금으로 지급합니다. 그러나 적립금이 없다고 내 년도에 기초연금을 받지 못할 것이라고 생각하는 사람은 없죠. 

기초연금처럼 적립금을 쌓아놓지 않고 연금을 지급하는 나라가 더 일반적입니다. 그런데 스웨덴, 일본, 미국, 캐나다 정도를 제외하고는 적립금을 쌓아놓고 연금을 지급하는 나라는 거의 없습니다. 연금이 고갈 되면 지급이 되지 못하는 것이 아니라 인구 보너스(생산 가능 인구가 늘어나는 시절) 시절에 적립해 놓은 적립금 보너스를 현재는 누릴 수 있다는 것이죠. 인구 보너스가 사라지면 적립금 보너스가 사라지는 것은 당연합니다. 

국민연금 고갈은 계획된 고갈입니다. 국민연금이 고갈된다는 의미는 거꾸로 말하면 국민연금 가입자는 낸 돈 보다 더 많은 돈을 가져가는 혜택을 본다는 의미입니다. 가입자가 낸 돈 보다 받아가는 돈이 많으면 연금은 고갈 될 수밖에 없죠. 만약에 가입자가 손해를 본다면(낸 돈 보다 조금만 받아가면) 연금 규모는 점점 커지겠죠. 강제로 국민연금을 가입하게 해놓고 가입자가 낸 돈보다 조금만 돌려주고 국가가 돈을 벌면 그건 '깡패'죠. 가입자가 낸 돈 보다 더 많은 돈을 주다 보면 당연히 언젠가는 고갈이 될 수밖에 없습니다.

현재 국민연금 제도가 아무런 개혁 없이 지속된다면 단순 계산으로 2057년도 고갈이 됩니다. 그러나 다음 두 가지 이유로 실제 고갈 시점은 더 미뤄질 것으로 예상됩니다. 

첫째,  기금 적립금액을 높이는 개혁이 점차적으로  이루어 질 것 입니다. 국민연금 도입 초기(1988)에는 소득대체율(소득대비 연금 지급금액)이 70%정도였죠. 1998년도에 60%로 낮추었습니다.  2003년도 당시 단순 계산으로는 연금 고갈시점이 2047년 였습니다. 그래서 2007년 개혁을 통해 소득대체율을 40%까지 낮추는 방안이 도입되었습니다. 2057년까지 앞으로 36년이나 남았습니다. 36년동안 순차적으로 기여금이 현재 9%(사업자 4.5%, 가입자4.5%)에서 조금씩 기여금을 높이는 식으로 개혁이 수차례 이루어져서 고갈 시점을 좀 더 늦춰야겠지요.

둘째, 고갈 이전에 일반회계에서 연금 기금으로 단계적으로 전출되는 금액이 증가하게 될 것입니다. 현재 국민연금기금은 900조원이 넘습니다. 우리나라 GDP(약 2000조원)의 절반에 육박하죠. 우리나라 상장기업의 상당부분을 국민연금이 보유하고 있습니다. 이렇게 큰 규모의 돈을 갑자기 모두 팔아서 연금을 지급하면 금융시장에 너무 큰 충격을 주게 됩니다. 그래서 고갈 이전에 연금 적립금을 높이게 되지요. 실제로 독일 같은 나라의 연금 적립금은 1주일치 또는 한 달 치 정도만 유지한 채 운영합니다. 고갈 되기 직전에 세금 등으로 채워주는 거죠.

국민연금 적자를 세금으로 채워주는 것은 너무 큰 재정적 부담이 되지 않을까요? 감내할 수 있습니다. 현재 OECD국가들 연금 지출 규모가 보통 GDP대비 11% 입니다. 그러나 국민연금 고갈 시점인 2060년도가 되어도 국민연금 지출 규모가 GDP대비 8%를 넘지 않을 것으로 계산 됩니다. 우리나라가 선진국에도 진입했는데 GDP의 8% 정도는 연금으로 지출할 수 있을 것으로 보입니다. 


3문장으로 정리해 보겠습니다.
1. 우리나라 기초연금은 물론 대부분의 나라는 연금 적립금이 0원이지만 안정적으로 연금 지급을 합니다. 적립금이 연금 지급의 필요조건이 아니란 얘기입니다.

2. 기금 적립금 고갈은 당연하고 자연스러운 계획된 일입니다. 낸 돈 보다 더 많이 가져가는 '강제저축'이라면 당연히 고갈 되어야 합니다. 기금 고갈은 거꾸로 말하면 가입자가 이익을 보고 있다는 의미 입니다.

3. 기금 고갈 시점이 2058년도로 알려져 있지만 이는 단순 계산결과에 불과합니다. 실제는 기금 개혁을 통해 수십년 뒤로  미뤄질 것으로 예상합니다. 또는 일반회계 전출금을 통해 영원히 고갈되지 않을 수 있습니다.